
 

B.Comp. Dissertation 
 

 

 

 

 

Preparing the Backend of a Large-scale Cloud Application 

for a Million Users 

 

 

 

By 

Xiao Pu 

 

 

 

 

Department of Computer Science 

School of Computing 

National University of Singapore 

 

 

2018/2019



 



i 
 
 

 

 

B.Comp. Dissertation 

 

 

Preparing the Backend of a Large-scale Cloud Application 

for a Million Users 

 

 

By 

Xiao Pu 

Title 

Department of Computer Science 

School of Computing 

National University of Singapore 

 

2018/2019 
 

 

 

 

Project No: H1221130 

Advisor: Associate Professor Damith C. Rajapakse 

Deliverables: 

Report: 1 Volume 



ii 
 
 

Abstract 

TEAMMATES is a large-scale cloud application for instructors to manage peer feedback 

among students. It is being developed by a project based in School of Computing (SoC), 

National University of Singapore (NUS). Since its public release in 2011, it has been used by 

over 350,000 users from all over the world. This project explored ways to prepare 

TEAMMATES backend to be able to handle its increasing user base, specifically with regard 

to performance, scalability and maintainability.  Based on the findings, three major components 

were enhanced in significant ways. The improvements in scalability and performance were 

proven both theoretically and empirically. While most of the tasks in this project were 

development-based, there were also some research components involved. 

 

Subject Descriptors: 

• General and reference~Performance 

• Information systems~Query optimization 

• Information systems~RESTful web services 

• Information systems~Database design and models 

• Computer systems organization~Maintainability and maintenance 

 

Keywords: 

Google App Engine, CRUD operations, batch operations, database cursor, 

representational state transfer 

 

  



iii 
 
 

Acknowledgement 

I would like to express my sincere thanks to A/Prof. Damith C. Rajapakse for his guidance, 

trust, and supervision throughout the project. I would also like to thank Wilson Kurniawan, the 

project mentor of TEAMMATES, for his timely and helpful code reviews despite having a full-

time job. Last but not least, part of the project would not have been possible without the help 

and support from senior developer Darren Wee, my mentees Rahul Rajesh, Jeremy Choo, Jiang 

Chunhui and Wang Junming. Thank you for your greatest contributions. I hope I have been a 

good mentor. I would like to express my best wishes to all of my mentees and hope you find 

the mentorships beneficial in your software engineering journey. 

 



i 
 
 

Table of Contents 
 

Title ............................................................................................................................................. i	

Abstract ...................................................................................................................................... ii	

Acknowledgement .................................................................................................................... iii	

1.	 Introduction ....................................................................................................................... 1	

2.	 Background ........................................................................................................................ 5	

3.	 Achievement 1: Improved Maintainability and Performance of the Storage Component 7	

3.1.	 Background ................................................................................................................ 7	

3.2.	 Problem Observed 1: Defective Write APIs ........................................................... 10	

3.3.	 Solution: Standardize Write APIs ........................................................................... 11	

3.4.	 Results ..................................................................................................................... 12	

3.5.	 Problem Observed 2: The Outdated “KeepExistingPolicy” .................................... 13	

3.6.	 Solution: Upgrade the “KeepExistingPolicy” ......................................................... 13	

3.7.	 Results ..................................................................................................................... 18	

3.8.	 Problem Observed 3: Slow Cascade Deletion ......................................................... 18	

3.9.	 Solution: Apply Batch Deletion .............................................................................. 19	

3.10.	 Results ................................................................................................................. 21	

4.	 Achievement 2: Improved Scalability and Performance of the Client Package .............. 24	

4.1.	 Background .............................................................................................................. 24	

4.2.	 Problems Observed: Unscalable Process, Poor Performance and Data Inconsistency

 24	

4.3.	 Solution: Fetch Entities in Batches .......................................................................... 27	

4.4.	 Solution: Save Entities in Batches ........................................................................... 30	

4.5.	 Solution: Introduce Transaction Support ................................................................. 31	

4.6.	 Results ..................................................................................................................... 32	

5.	 Achievement 3: Improved Maintainability and Performance of the API Endpoints ...... 37	

5.1.	 Background .............................................................................................................. 37	

5.2.	 Problem Observed: Endpoints with Low Maintainability ....................................... 39	

5.3.	 Solution: Migrate to RESTful Endpoints ................................................................ 40	

5.4.	 Results ..................................................................................................................... 46	

5.5.	 Future work ............................................................................................................. 49	

6.	 Other Works .................................................................................................................... 50	



ii 
 
 

6.1.	 Migration from JSP to Angular for Three Pages ..................................................... 50	

6.2.	 Project Management ................................................................................................ 50	

6.3.	 Bugs Fixed ............................................................................................................... 51	

7.	 Conclusion ....................................................................................................................... 52	

References ............................................................................................................................... 53	

Appendix A – Optimized Saving Policy Benchmarking Data ................................................... i	

Appendix B – RESTful Endpoints Benchmarking Data .......................................................... iii	

 

 



1 
 
 

1. Introduction 

TEAMMATES (https://teammatesv4.appspot.com/) is an online peer evaluation platform for 

instructors to manage peer feedback among students primarily. 

 

 
Figure 1 – Main functionalities of TEAMMATES 

The TEAMMATES user workflow is as follows:  

1. An instructor creates a course in TEAMMATES and enrol students in the course.  

2. The instructor creates a feedback session and adds different types of questions (e.g., 

essay questions, rubric questions, and multiple choice questions) for students to answer 

about their peers. 

3. When the session opens for submission, students receive an email containing a unique 

link to submit responses. 

4. Students submit their responses before the deadline of the feedback session.  

5. The instructor views the feedback collected. Optionally, the instructor can publish the 

responses so that students can view feedback they have received from peers.  

As of April 2019, TEAMMATES has been used by more than 350,000 users coming from over 

800 universities, spanning 96 countries. 

 

TEAMMATES is being developed as an open-source project 

(https://github.com/TEAMMATES/teammates) based in School of Computing (SoC), National 

University of Singapore (NUS). It is a project managed by SoC students and has received 

contributions from over 500 developers since 2010. The core team members are mainly NUS 



2 
 
 

students while the contributors are from all over the world. Two main sources of contributors 

are from Google Summer of Code program1 and the module CS3282 Thematic Systems Project. 

 

Based on the current growth rate, TEAMMATES is expected to pass the 0.5 million mark and 

start moving toward 1 million users within the two years. A natural question to ask is whether 

the application is ready to serve a huge amount of users. More specifically, it is essential to 

know whether there are any aspects that can be improved to prepare TEAMMATES for a 

million users. This is the primary motivation of this Final Year Project (FYP). 

 

There are multiple aspects of the application that can be improved for a million users. For 

example, a new feature could be added to improve the usability of the application. Alternatively, 

enhancements could be done to improve the reliability of an existing feature. However, there 

have been a number of past projects focusing on adding or enhancing features. Hence, this FYP 

project focuses on less discernible but more significant aspects — performance, scalability, and 

maintainability — to prepare the application for a million users. Although the effects of the 

aforementioned factors are less discernible in the short term, they will undoubtedly have 

significant impacts when more users use the system. Given below is a brief explanation of the 

three aspects, in the context of TEAMMATES: 

 

• Aspect 1: Performance: It is important that the performance of the application should 

not degrade despite the application’s growth.  This is because the Google App Engine 

(GAE), the PaaS2 platform on which TEAMMATES is running, requires every request 

to complete within 60 seconds (Google, How Requests are Handled, 2019). Requests 

that take more than 60 seconds will be killed by GAE, resulting in an unpleasant user 

experience and possibly causing the loss of some data. In fact, there have been reports 

from users complaining that the application becomes slower when the size of a course 

increase. 

 

                                                

 
1 Google Summer of Code (GSoC) is an international program initialized by Google to encourage more students 
to contribute to open-source projects. TEAMMATES participates in GSoC for 5 consecutive years from 2014 to 
2018. 
2 PaaS: Platform as a Service 



3 
 
 

• Aspect 2: Scalability: The application should be able to handle a large amount of data. 

While the GAE’s infrastructures claim to have the ability to auto-scale, such capabilities 

are not fool-proof. For example, it is not wise to load data that exceeds the maximum 

memory size in a single server. Such operation will result in out of memory errors. 

 

• Aspect 3: Maintainability: The large-scale project should also be maintainable. 

Technical debts3 and outdated designs should not become obstacles in the way of 

development. Any inappropriate designs and hacks4 in the existing codebase should be 

eliminated as far as possible for better maintainability. 

 

This FYP project has managed to address all three aspects. In doing so, it also has achieved the 

following three major achievements. 

 

1. Achievement 1: Improved Maintainability and Performance of the Storage 

Component. The storage component of the system has been enhanced to improve its 

maintainability and performance. As a result, its APIs (Application Programming 

Interface) have become more standardized and the latency of database operations has 

reduced significantly. Chapter 3 gives more details of this achievement. 

2. Achievement 2: Improved Scalability and Performance of the Client Package. The 

client package which is often used to batch-process large amounts of data (e.g., migrate 

all data into a new format) was identified as having low scalability. It was redesigned 

to improve its scalability and performance. By applying various database optimization 

techniques, the scripts were made more scalable so that they can perform reasonably 

even when TEAMMATES has a million users. Chapter 4 illustrates this achievement 

in detail. 

3. Achievement 3: Improved Maintainability and Performance of the API Endpoints. 

The API endpoints of the backend have been migrated to follow the REST principles. 

Correspondingly, the uniformness, conciseness and self-descriptiveness of the 

                                                

 
3 Technical debt indicates the cost of additional rework caused by choosing a working solution instead of a better 
solution due to time constraints when a task is implemented. 
4 Hacks refer to the code that is designed to handle special cases. These hacks are usually hard to understand 
without knowing the whole context. 



4 
 
 

endpoints have been improved. In addition, the performance has also been improved 

noticeably. The details are given in Chapter 5. 

 

In addition to the above three main achievements, I also contributed to the project in several 

other ways such as project management, bug fixing, and code review. I am also served as the 

project lead during the latter part of my project and helped to manage (and mentor) 10-15 new 

developers. 

 

The remainder of this report is organized as follows. Chapter 2 explains the essential technical 

design and tool stacks used in the projects in lieu of a literature review5. Chapter 3, 4 and 5, as 

mentioned above, discuss the three main achievements of this project. In each chapter, a 

background that is specific to the achievement is given, followed by defining the problem 

addressed. After that, the proposed solutions are discussed and the improvements in term of 

the mentioned three aspects (i.e., performance, scalability, and maintainability) are shown. 

Lastly, some suggestions for future works are included if there are rooms for future 

improvements. Chapter 6 presents some miscellaneous tasks that were done. The report ends 

with a conclusion drawn in Chapter 7 where a brief summary of results and final thoughts are 

presented. 

 

  

                                                

 
5 This FYP project is a development project rather than a research project. 



5 
 
 

2. Background 

TEAMMATES is a cloud-based application running on Google App Engine (GAE), which is 

a Platform as a Service (PaaS). GAE provides the basic infrastructures for the application such 

as database systems and Hypertext Transfer Protocol (HTTP) servers. In addition, it also scales 

applications and balances traffics automatically. As GAE handles the low-level details, 

developers could focus on high-level logic and interactions.  

 

 
Figure 2 – Overview of the Architecture of TEAMMATES. Source: TEAMMATES developer guides 

TEAMMATES is a large-scale project designed using a layered architecture, as shown in 

Figure 2. 

 

The following shows the five distinct layers of the application. 

• UI (User Interface) (browser) is responsible for rendering HTML pages based on the 

data passed by UI (server). The layer is usually called as the frontend. The rendering 

logic is built based on the Angular framework. 

• UI (server) opens endpoints in the server for the frontend to retrieve and manipulate 

data. The layer is usually called as the backend. Responses from the backend are sent 

over HTTP using JavaScript Object Notation (JSON). 



6 
 
 

• Logic contains the core business logic. 

• Storage is responsible for conducting create, read, update, and delete operations 

(CRUD). 

• Common contains utility classes that will be shared among the application. 

 

The following shows how different users of TEAMMATES interacts with it: 

• A typical user would interact with the application using browsers. The frontend will 

send  Asynchronous JavaScript And XML (AJAX) requests to fetch necessary data to 

generate HTML pages. 

• A developer would use the test driver to test the application during the development 

process. 

• An End-to-End (E2E) tester would test the system as a black-box to verify the correct 

behaviors of the application. 

• A project admin (manager) would use the client package to directly connect to the 

database to perform administrative tasks. This is done by using the GAE Remote API. 

  



7 
 
 

3. Achievement 1: Improved Maintainability and Performance of the 

Storage Component 

The background of this chapter will be given first, followed by several sub-sections in the 

fashion of problem, solution and results. 

3.1. Background 

TEAMMATES uses GAE Datastore as a NoSQL document database to store application data. 

The employment of such database eliminates any concerns of performance, scalability, and 

maintenance on the database side. According to Google (Google Cloud Datastore, 2019), the 

Datastore is a distributed database built for high performance, high availability and high storage 

capacity. Data is replicated and distributed geographically in Google’s infrastructures. Objects 

with properties are stored as entities with a particular kind (type). A stored object is called an 

entity. An entity can be accessed by using a key associated with that entity or by querying the 

properties of that entity. 

 

TEAMMATES’s data model is designed to follow the characteristics of the Datastore. Figure 

3 shows the logical data model. There are many cross-references between entity types. For 

example, there is a hierarchy structure from Course to FeedbackSession, from 

FeedbackSession to FeedbackQuestion, from FeedbackQuestion to 

FeedbackResponse and from FeedbackReponse to FeedbackReponseComment. In each 

entity type, the references of its ancestors6 are stored so that an entity can easily locate its 

ancestors without fetching its parent. This is an optimization done in the early stage of 

TEAMMATES since Datastore does not support join operation.   

                                                

 
6 Ancestors are the parent together with all the ancestors of the parent. 



8 
 
 

 
Figure 3 – The logical data model 

To hide the complexities in the data model and to abstract the storage processes, 

TEAMMATES puts the responsibility of doing CRUD into a dedicated component called the 

storage component as shown in Figure 4. The logic component will use the APIs exposed by 

the storage component. 

  



9 
 
 

 
Figure 4 – Source: TEAMMATES developer guides 

 

 
Figure 5 

Inside the storage component, Objectify 7  is employed to interact with the Datastore. A 

dedicated DB class is created for each entity type (e.g., AccountsDb manages Account 

entities) as illustrated in Figure 5. This separates the concerns of entity management from the 

entities themselves. 

                                                

 
7  Objectify (https://github.com/objectify/objectify) is an open-source project designed to further abstract the 
Datastore’s APIs. 



10 
 
 

 

Besides, a data transfer object (DTO) is created for each entity. These DTOs are used to carry 

entity data outside the storage component and hide any implementation-specific information. 

For example, InstructorPrivilege is a complex class that controls the privilege of 

instructors in different granularities. When it is stored, the storage component serializes the 

object into a JSON string. When the object is requested, the JSON string is deserialized into a 

concrete object. This hides the complexity of serialization and deserialization from the logic 

component, enabling it to focus on higher level logic. 

 

3.2. Problem Observed 1: Defective Write APIs 

Upon investigation, it is found that the current create and update APIs do not return the created 

or updated entity. Figure 6 and Figure 7 show two typical method signatures for creating and 

updating a student. 

 

 
Figure 6 

 
Figure 7 

If the logic component wants to retrieve the created or updated entity, it needs to issue another 

unnecessary read request, which adds to the usage costs for database operations8. In addition, 

the extra read request increases the latency experienced by users. Figure 8 gives an example in 

the codebase where a feedback response is being retrieved immediately after the creation. As 

the creation of a feedback response entity is a frequent operation in TEAMMATES, one can 

expect this flaw to have a considerable impact on overall database read costs and request 

latency. 

 

                                                

 
8 Google charges applications based on theirs usages. The detailed charging plan of Google Cloud Datastore can 
be found in https://cloud.google.com/appengine/pricing#costs-for-datastore-calls. 



11 
 
 

 
Figure 8 

In addition, the behavior of not returning the created or updated entity is also error-prone. The 

storage component sanitizes some fields before creating or saving entities, resulting in minor 

modifications of some fields. However, such modifications will not be reflected on the 

parameters passed in. In the case where the logic component fails to retrieve the modified entity, 

stale values will be used, which may cause bugs. In fact, there are already two critical bugs9 

because of this. The root cause of them is the same: some fields are modified by the storage 

component while the logic component still uses the old values. 

 

3.3. Solution: Standardize Write APIs 

The most logical way to fix the flaw in concern is to update the APIs so that create/update 

methods return the created/updated entity. There will be no extra cost in the storage layer in 

adding this behavior as the response from the Database will contain the necessary information 

to populate the fields in the entity involved. The newly added return statement is highlighted 

in Figure 9. 

 

                                                

 
9 https://github.com/TEAMMATES/teammates/issues/9157 
https://github.com/TEAMMATES/teammates/issues/9090 



12 
 
 

 
Figure 9 

In doing so, the logic component can get the created and updated entity without any extra cost. 

It can also safely ignore the return value if the value is not needed. Javadoc was updated/created  

(shown in Figure 10) for each write API to reflect the new behavior. Besides, test cases were 

also updated to achieve 100% line and branch coverage to minimize regressions in future. 

 

 
Figure 10 

 

3.4. Results 

Most of the places where the created or updated entity is fetched immediately after write 

methods were changed to use the returned entity to save read costs and to prevent potential 

bugs. The code has been merged for more than 2 months and no regression has been found so 

far. It is expected that the Datastore read cost bill will be lower and similar bugs will not happen 

in the future because of the code refactoring, well-written Javadoc and fully-covered tests.  

 



13 
 
 

3.5. Problem Observed 2: The Outdated “KeepExistingPolicy” 

Another problem lies in the “KeepExistingPolicy” for update methods (APIs). The policy 

requires update methods to accept the data transfer version of an entity to update. Non-null 

fields in the DTO will be updated with the corresponding new values while null fields are left 

untouched. This approach might work in the early stage of the project. However, the policy has 

become outdated and problematic in the current development process. 

 

Firstly, some fields are needed to be updated to null. For example, a student might change 

his/her Google account and the association between CourseStudent and Account should be 

broken. In this case, the googleId field will be updated to null. However, this conflicts with 

the “KeepExistingPolicy” since null fields should be left untouched. The current solution in 

the codebase is to partially break the policy, which already indicates the outdatedness and 

incapability of the policy. 

 

In addition, it is unclear to developers that which fields are used to identify the entity to update. 

The primary keys indicated in the logical data model are keys chosen to be stored in the 

database. Beside them, there are multiple unique constraints that are enforced by the code 

logic10. For instance, Instructor can be identified by (courseId, email) or (courseId, 

googleId). By looking at the update method itself, which pair will be used to identify the 

entity to update is ambiguous. Even if there is a priority between each pair, updating email of 

an instructor to a new one would be impossible when only courseId and email of the original 

instructor are known. All the difficulties mentioned above have their complicated workarounds 

in the codebase which reduce the readability and eventually the maintainability of the code. 

 

3.6. Solution: Upgrade the “KeepExistingPolicy” 

To tackle the problematic and outdated updated policy, the “KeepExistingPolicy” is upgraded 

and extended. Instead of using null as a special value to indicate an unchanged property, a 

dedicated class called UpdateOption is used. In addition, a data transfer object 

                                                

 
10 Due to the limitation of the Datastore as a No-SQL database, the unique constraint is enforced by code rather 
than the database itself. 



14 
 
 

UpdateOptions is created for each entity to carry the values to update. Figure 11 uses 

StudentAttributes as an example to illustrate the relationships. 

 

 
Figure 11 

The static method updateOptionsBuilder() in StudentAttributes returns a builder 

for UpdateOptions. In the method signature, it clearly states the criteria used to identify the 

update entity. In this case, the pair (courseId, email) is used. A UpdateOptions can be 

built with a chain of method calls of the builder. Each method call of the builder will set the 

corresponding UpdateOption with the value to update. It should be noted that null value is 

allowed so that field such as googleId can be updated to null. It is also possible to update 

the email of a student with (courseId, email) as an identification pair by calling 

withNewEmail(). 

 

When the logic component wants to update an entity, it calls the corresponding update method 

in the storage component with the populated UpdateOptions rather than its DTO. 

 



15 
 
 

 
Figure 12 

Figure 12 shows how a student is updated with UpdateOptions. Firstly, the student to update 

is fetched based on the (courseId, email) specified in UpdateOptions. Then, the 

update() method in StudentAttributes is invoked to populate fields with new values. 

Finally, a save request is issued and the updated student is returned, which is consistent with 

the solution introduced for the defective write APIs. 

 

It is also possible to use different pairs to identify the entity to update as shown in Figure 13. 

An instructor can be updated by using UpdateOptionsWithGoolgeId and 

UpdateOptionsWithEmail, which corresponds to the pair (courseId, email) and pair 

(courseId, googleId) respectively. In each Options, fields that are updatable are shown 

explicitly to eliminate any confusion from developers. For example, in this case, email is not 

updatable by using (courseId, email). 

 



16 
 
 

 
Figure 13 

Furthermore, since we know which fields are going to be updated, it is possible to implement 

the optimized saving policy as mentioned in the interim report (Xiao, 2018). In the interim 

report, one of bottleneck regarding slow submission of feedback session was identified and the 

optimized saving policy was proposed to be one of the solutions. The optimized saving policy 

suggests entities be updated only if they are changed. The report also mentioned that the 

optimized saving policy could increase the throughput of feedback submission by 32% and 

decrease the latency by about 25% on average (shown as Figure 14 and Figure 15)11. Therefore, 

the saving process in Figure 12 is modified to adopt the policy. 

 

 
Figure 14 

                                                

 
11 The raw experiment data can be found in Appendix A – Optimized Saving Policy Benchmarking Data. 

17.89

23.66

0.00

5.00

10.00

15.00

20.00

25.00

Original Update	Only	If	Changed

Th
ro
ug
hp
ut

Throughput	Comparision	of	Feedback	
Submission	Action



17 
 
 

 

 
Figure 15 

 

 
Figure 16 

As indicated in Figure 16, save request is issued only if the updatable fields of a student are 

changed. 

 

9575.38

6937.27

2525.23
1498.59

7436.59

5357.35

2026.30
1080.520.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

Latency	99% Latency	95% Latency	75% Latency	50%

La
te
nc
y	
in
	m
s

Latency	Percentile	Comparision	of	Feedback	
Submission	Action

Original Update	Only	If	Changed



18 
 
 

3.7. Results 

The upgraded policy was implemented and the code was merged into the master branch. So far, 

the upgrade policy fits both the old and new requirements of the applications well, bringing the 

update methods to the next maintainable stage. Besides the improvements in maintainability, 

due to the refactoring, the optimized update policy gets implemented in a clean and clear way. 

This finish one of the leftover tasks in the interim report. The improvement regarding feedback 

submission action is proven in the benchmarking and it is expected that the overall performance 

of the application as a whole will also be improved as the optimized saving policy is 

implemented for all entities shown in the logic data model.  

 

3.8. Problem Observed 3: Slow Cascade Deletion 

The last problem is about the performance aspect and it is observed that the current cascade 

deletion strategy has a high latency.  

 

 
Figure 17 

Figure 17 shows a typical deletion process for the current cascade deletion strategy. Involved 

entities are fetched at once and are deleted one by one. In the deletion method in each logic, 

the deletion request is forwarded to the storage component. 



19 
 
 

 

Let us denoted the overhead such as communication cost between server and database when 

issuing database manipulation requests as h. If there are 10 questions for a typical feedback 

session, 100 responses for each question and 0 comment for each response, we would expect 

the overhead of the current deletion strategy to be 

1h + 10h + 1000h + 1h + 10h = 1022h 

The first 1011h comes from the overhead of deletion requests and the second 11h comes from 

the overhead of retrieval requests. This number can be subtle if h is small. However, in the 

benchmarking to a staging server where the same number of questions, responses, and 

comments is configured, the operation takes around 40 seconds to complete. Such latency is 

not acceptable as it is quite close to the 60 second time limit required by GAE. When there are 

more questions and responses, the request will simply time out because it exceeds 60 seconds, 

leaving an error message to users and an inconsistent database. 

 

3.9. Solution: Apply Batch Deletion 

To boost the performance of cascade deletion, the deletion strategy is redesigned so that batch 

deletion is supported. Thanks to the hierarchy as shown in the data model, when a parent is 

deleted, all of its descendants12 can be obtained and deleted without fetching their associated 

parents. The process is illustrated in Figure 18 using the deletion of a feedback session as an 

example. 

 

                                                

 
12 The descendants of an element is the children of an element together with all descendants of the children. 



20 
 
 

 
Figure 18 

Again, the deletion requests in logic will be forwarded to the storage component. In the storage 

component, the keys of entities to delete are fetched based on the granularity specified by 

AttributesDeletionQuery (shown in Figure 19). 

 

 
Figure 19 

An AttributesDeletionQuery can be built with the associated builder (shown in Figure 

20) and the granularity is defined based on the method calls. For example, a query to delete 

entities involved in a course can be constructed by calling withCourseId(). 

 



21 
 
 

 
Figure 20 

In the same scenario shown in section 3.8, the overhead caused by the redesigned deletion 

strategy is just 

1h + 1h + 1h + 1h + 1h + 1h = 6h 

The first 3h comes from deletion of the feedback session, questions and responses and the 

second 3h comes from keys retrievals of questions, response and comments13. Compared to 

the old overhead, the new deletion strategy significantly decreases the overhead by about 

99.4%. 

 

Moreover, since only keys of involved entities are retrieved rather than the actual entities, the 

deletion would be more cost-effective and efficient. In the charging plan of the Datastore, it 

indicates that there is no read cost for key-only queries14. Thus, the get operation to retrieve 

entities to delete is free-of-charge. Besides, according to Cooper (2009), when a query only 

requests to retrieve the keys of the matched entities, the operation is approximately two times 

faster than retrieving the full attributes. Therefore, it is expected that the batch deletion would 

be even faster. In fact, the benchmarking conducted in the next section confirms the hypothesis. 

 

3.10. Results 

The same benchmarking to the staging server where a feedback session is deleted has also been 

conducted for the new deletion strategy. 

 

                                                

 
13 There is no comment in the scenario so the retrieval of comments will return empty result. This is also why the 
first 3h does not contain the cost for deletion of comments. 
14  Refer to the charging plan of Google App Engine: https://cloud.google.com/appengine/pricing#costs-for-
datastore-calls.  



22 
 
 

 
Figure 21 

In Figure 21, while the old deletion strategy takes around 40 seconds to complete, the new 

deletion strategy finishes in less than 2 seconds, improving the performance by 95.5%. 

 

An experiment has also been done for the cascade deletion of a typical feedback question. 100 

responses are set for a question and each response is configured to have 20 comments. 

 

 
Figure 22 

In this case (shown in Figure 22), the latency decreases by about 56.8%. The performance boost 

is not as much as that for the feedback session because the old deletion method partially adopts 

the concept of batch deletion. 

 

42.345

1.865
0
5

10
15
20
25
30
35
40
45

Old New

La
te

nc
y

(s
ec

on
d)

Latency Comparision between the Old and New
Deletion Strategy (Deletion of Feedback Session)

8.340

3.600

0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

Old New

La
te

nc
y

(s
ec

on
d)

Latency Comparision between the Old and New 
Deletion Strategy (Deletion of Feedback Question)



23 
 
 

For other entities, namely courses and comments, the concept of batch deletion is already 

adopted before the introduction of AttributesDeletionQuery. Those methods are 

refactored to have consistent method signatures. In fact, it would be messier if they are not 

refactored. 

 

 
Figure 23 

As indicated in Figure 23, without AttributesDeletionQuery, deletion methods in 

FeedbackCommentsDb would need to be duplicated four times, introducing more complexity 

and requiring more maintenance efforts. 

 

In summary, all deletions methods are standardized and refactored to apply batch deletions. 

The performance of cascade deletion is improved significantly.  



24 
 
 

4. Achievement 2: Improved Scalability and Performance of the Client 

Package 

4.1. Background 

The client package in TEAMMATES is mainly used to do data migration or to collect the usage 

of the application.  

 

For example, when a new field is added to an entity, in order to write consistent code without 

any special handler of legacy data format, a new client script is needed to add a default value 

to the new field for all old entities. Such script is known as the data migration script. 

 

The project manager may also use a dedicated script called stats script to collect the overall 

usage of TEAMMATES such as the number of institutes which adopt TEAMMATES as a 

feedback system and the number of unique users in the system. 

 

In order to monitor the progress of any client scripts, all scripts are run locally on a typical 

Windows computer owned by the project manager. 

 

4.2. Problems Observed: Unscalable Process, Poor Performance and Data 

Inconsistency 

This section presents three inter-connected problems found in the script package: unscalable 

process, poor performance and data inconsistency. 

 



25 
 
 

 
Figure 24 

Figure 24 illustrates the process of doing data migration or statistics calculation in the client 

package. All concerned entities are loaded first (indicated as 1) and then processed one by one 

(indicated as 2.1 or 2.2).  

 

It is found that the above-mentioned process is not scalable because it loads all involved entities 

at once. When the amount of data grows, it is impossible to load all of them because of the 

limited memory space. A benchmarking for a typical data migration script is conducted against 

a database with 100K entities and Java heap space is monitored using YourKit15. 

 

 
Figure 25 

We can clearly distinguish the phase for step 1 and step 2 as indicated in Figure 25. When the 

script is migrating entity one by one, the stabilized occupied memory size is about 750MB. 

While a typical computer nowadays can easily handle such amount of memory, when the user 

                                                

 
15 YourKit (https://www.yourkit.com/) is an industry leading profiler tool for Java applications. 



26 
 
 

base grows to millions, the script will become brittle. In addition, the benchmarking only tests 

one entity type while the stats script requires more entities to be loaded in order to calculate the 

usage (show as 2.2 in Figure 24). Thus, the stats script requires even more memory space. In 

fact, on Nov 1, 2018, the stats script failed to run because of OutOfMemoryError16 when the 

user base of the application exceeded 300K. 

 

Beside the space complexity, it is also worth discussing the time complexity. According to the 

project manager, the completion time of the stats script is acceptable while the performance of 

data migration scripts is poor. It is reported that some data migration scripts take hours or even 

days to finish. This is reproduced by the above-mentioned benchmarking where the data 

migration script takes 4.3 hours to complete. Loading all 100K entities takes around 3 minutes 

while saving entity one by one takes about 4 hours. Thus, it is reasonable to estimate that 

migrating a million entities will take around 40 hours.  

 

One might think that 40 hours are acceptable. However, the script faces the risk of interruption. 

The script might exit halfway unexpectedly due to various reasons such as unstable networks. 

If this happens, the script needs to be re-started. All procedures are executed again even some 

entities have been migrated. In the worst case, if 1M entities need to be migrated while the 

script always stops after 500K entities are migrated because of poor connections17, the data 

migration will never complete. In fact, due to this concern, one of a data migration script is 

pending to be run for 6 months because it involves 30K entities. 

 

Last but not least, data consistency will become a significant problem when the completion 

time for the data migration becomes longer and longer. 

 

                                                

 
16 Issue reported by project manager on https://github.com/TEAMMATES/teammates-ops/issues/7. 
17 It is reported by the project manager that GAE will kill the data migration script in several hours. Though the 
behavior is not stated in the GAE’s documentation, it is a situation that needs to be taken into consideration. 



27 
 
 

 
Figure 26 

As shown in Figure 26, entity E might be changed by users during the data migration. Because 

all entities are loaded at the beginning, there is no way for the script to know the update of 

entity E. Thus, entity E might be saved with stale values, which might lead to data inconsistency. 

In the above-mentioned benchmarking, the time to save entity one by one is about 4 hours. 

That is to say; there is at most 4 hours interval between the read and the write operations. It is 

totally possible that users may update the involved entities during the period. 

 

4.3. Solution: Fetch Entities in Batches 

To occupy less memory space, one can only fetch a limited number of entities and run the script 

multiple times. For example, a script could be designed to get entities created within the past 

year first. After that, another round of execution could be conducted for entities created 

between last year and the year before. If the migration schemes are adequately scheduled, the 

script should be able to handle a large amount of data. Indeed, the stats script is partially 

redesigned with such technique applied. As shown in Figure 27, entities created within a month 

is fully loaded first18. After that, the calculation of statistics will begin and save the computed 

data locally. This is shown as 1.1, 1.2 and 1.3. 

 

                                                

 
18 Figure 27 and Figure 28 assume the involved data comes from a single Database server for illustration purposes. 
In real, the Datastore distributes entities based on their associated keys. 



28 
 
 

 
Figure 27 

After one iteration is completed, another iteration begins and the stats are calculated based on 

the checkpoint saved in the previous iteration. This is shown as 2.1, 2.2 and 2.3 in Figure 28. 

 
Figure 28 

The iteration is made to be automatic and the script is able to remember the last query interval. 

Therefore, if the stats script was executed one month ago and the project manager wants to get 



29 
 
 

the statistics of this month, only one iteration is needed as all previous statistics are stored 

locally. 

 

However, the same idea cannot be applied to the data migration script as some entities do not 

track creation time. In addition, it is difficult to control the number of entities in each group as 

the number of entities created within a time interval is unknown. In fact, this is also a problem 

faced by the stats script. In the worst case, loading those entities will still result in 

OutOfMemoryError. The scripts are still not scalable. 

 

After a detailed investigation on the documentation of Datastore, it is noted that the Cursor 

support could be used to solve the scalability issue. The Cursor represents the position of the 

currently matched entities. When supplied into a query, the Cursor tells the Datastore to start 

from the position indicated rather than querying from the beginning. For example, as shown in 

Figure 29, a script could query the first 100 entities and record down the Cursor. After the 

processing of the 100 entities, another query could be issued with the recorded Cursor 

attached. In doing this, only entities after the first 100 entities will be fetched. The technique 

could be applied again and again, enabling the script to do incremental data migration by 

fetching entities in batches. 

 

 
Figure 29 

With this technique, the data migration script becomes scalable. Even if the script is stopped 

unexpectedly, because the script persists the latest Cursor position, it can be re-started from 

the last failing point.  

 



30 
 
 

The stats script also adopts the Cursor technique as the number of entities created in a time 

interval is unknown. Along with the technique mentioned in Figure 27 and Figure 28, the stats 

script also become capable of aggregating usage of the application for a million users. 

 

4.4. Solution: Save Entities in Batches 

Since 99% of the time is spent on saving entities one by one as presented in section 4.2, some 

optimizations should be done to the saving process. The best practices presented by Google 

(Limitations and Best Practices - Remote API for Java, 2019) are explored and the technique 

of saving entities in batches is applied. Figure 30 and Figure 31 illustrate the differences of 

migrating 100 entities. 

 

 
Figure 30 

 



31 
 
 

 
Figure 31 

If the overhead such as network communication is denoted as h, the total estimated overhead 

for the old saving process (Figure 30) is: 

h + 100 * h = 101h 

For the new batch saving process (Figure 31), the total estimated overhead is 

h + h = 2h 

Thus, the total saved time is: 

101h – 2h = 99h 

It should be noted that 99h is only the saved time for 100 entities. For thousands of entities, 

the saving process as shown in Figure 30 and Figure 31 will be applied again and again19. Thus, 

it is expected a significant decrease in completion time when a large number of entities is 

involved. 

 

4.5. Solution: Introduce Transaction Support 

If the time interval between the read and write operation is less than 1 second, the potential 

data inconsistency in TEAMMATES is tolerable as the scenario is unlikely to happen. 

However, for some entities, data consistency might be a critical business requirement. For 

example, there is a respondent set shared among all students in a feedback session. The 

respondent set will be updated based on whether a student has answered the feedback session 

                                                

 
19 Note that the Cursor technique introduced in the previous section is applied. 



32 
 
 

or not. Failure to achieve consistent respondent set may lead to wrong decisions made by 

instructors. Therefore, there is a need to have a more robust solution rather than manually 

minimizing the interval between the read and write operations. 

 

Fortunately, the Datastore provides transaction support, which will ensure the isolation of the 

execution. 

 

 
Figure 32 

As shown in Figure 32, when the execution is wrapped in a transaction, instead of blindly 

executing write operation, the Datastore will execute an extra commit phase to check whether 

the involved entity has been updated or not. If it updated, it will fail the commit and retry it 

later 20 . Thus, there will not be any accidental overridden with stale values. However, a 

transaction comes with costs. According to Google (2019), transactions are less efficient when 

using with the GAE Remote API. Due to this, the data migration script is designed with the 

transaction option off. The decision on whether a transaction should be used for a specific data 

migration task is left for developers to decide. 

 

4.6. Results 

Both the new stats script and data migration scripts have been delivered to the project. 

According to the project manager21,  the new stats script continued to count statistics correctly 

when the user base reached 300K. With the help of the new data migration script, the leftover 

                                                

 
20 This is known as optimistic concurrency control. 
21 The discussion can be found in https://github.com/TEAMMATES/teammates/pull/9232.  



33 
 
 

data migration task with 30K entities to migrate was also completed without any error. Besides, 

many other scripts have been developed based on the new techniques introduced. For example, 

a scanning script has been introduced to check properties of entities, helping developers to 

verify the hypothesis made. A Google account migration script has been introduced to transfer 

users’ data when they change their Google accounts. To sum up, all scripts are proven to be 

implemented correctly. 

 

To verify the ability of those scripts for a million users, some experiments have also been 

conducted. Figure 33 shows the memory usage when 1 million simulated entities are involved 

for the stats script. The increase of the memory is still manageable as only 1.7GB memory is 

occupied under such a big scale. 

 

 
Figure 33 

 

The benchmarking conducted for the old data migration script has also been run against the 

new data migration script. 100 entities are fetched each time with the Cursor support. As 

shown in Figure 34, only 170MB memory is occupied, which decreases the memory usage by 

77.2% when comparing to the old one. 

 

 
Figure 34 

Moreover, both the stats script and the data migration script have much better completion time. 

The project manager reports that it only takes around 5 minutes to complete one iteration for 



34 
 
 

the stats script. The incremental aggregation indeed helps to reduce the completion time 

significantly.  

 

 
Figure 35 

In the same benchmarking where 100K entities are scheduled to be migrated, the new data 

migration script finishes in 736 seconds when transaction is disabled as shown in Figure 35, 

decreasing the completion time by 95.2% when comparing to the old data migration script. 

 

Last but not least, it is also worth to examine the time interval between the read and the write 

operations. In the new data migration script, the worst time interval is about 0.67 seconds, 

which is a big improvement compared to the old data migration script. Such smaller interval 

provides more guarantee for data consistency and the small risk is acceptable. If strong data 

consistency is needed, transaction can be used. However, it comes with significant costs as 

shown in Figure 36. 

 

15593

736

0 5000 10000 15000 20000

Old

New	without	Transaction

Time (second)

Completion Time of the Data Migration 
Script



35 
 
 

 
Figure 36 

When the transaction context is introduced, due to the overhead of using transaction, the 

completion time is about 2 times worse than the old data migration script. Therefore, any 

developer should carefully decide whether a transaction should be used. 

 

Before ending this section, it should be mentioned that the batch size for all new data migration 

scripts is set to be 100. It is possible to set it to a bigger number22. However, there is no much 

difference (as shown in Figure 37) when transaction is enabled because the biggest overhead 

is brought by the transaction itself. 

 

                                                

 
22 Due to a bug (https://stackoverflow.com/questions/41499505/objectify-queries-setting-limit-above-300-does-
not-work/41509697#41509697) in GAE Remote API, the number cannot be set to more than 300. 

15593

736

30000

0 5000 10000 15000 20000 25000 30000 35000

Old

New without Transaction

New with Transaction

Time (second)

Completion Time of the Data Migration 
Script



36 
 
 

 
Figure 37 

When transaction is disabled, there are improvements in completion time but with a tradeoff 

of data consistency. 

 

 
Figure 38 

As shown in Figure 38, when the batch size is changed from 100 to 300, the risk of data 

inconsistency is around 2 times bigger while there is only 26% improvement on the completion 

time. Therefore, it is recommended to set the batch size to 100. 

 

In conclusion, both the theoretical analysis and the practical benchmarking prove the 

correctness, scalability and performance of the new scripts. The redesign of the script package 

prepares TEAMMATES well for a million users.  

31200

31000

30000

0 5000 10000 15000 20000 25000 30000 35000

300

200

100

Time	(second)

Ba
tc
h	
Si
ze

Completion	Time	of	Different	Batch	Sizes	
with	Transaction

736

585 541
0.697

1.158

1.528

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

0
100
200
300
400
500
600
700
800

100 200 300

In
te
rv
al
	(s
ec
on
d)

Ti
m
e	
(s
ec
on
d)

Batch	Size

Completion	Time	and	Read	Write	Interval	with	
Different	Batch	Sizes	without	Transaction

Completion	Time Read	Write	Interval



37 
 
 

5. Achievement 3: Improved Maintainability and Performance of the API 

Endpoints 

5.1. Background 

On January 29th, 2019, TEAMMATES V7.0.0-alpha.0 23  is released internally with 80% 

functionalities migrated from JSP to Angular. The frontend and the backend are separated. 

They communicate through HTTP requests and responses. 

 

 
Figure 39 

Figure 39 shows the interactions between the frontend and the backend24. The backend sends 

all data in JSON to the frontend and the frontend renders a page with the received data bundle. 

                                                

 
23 https://github.com/TEAMMATES/teammates/releases/tag/V7.0.0-alpha.0 
24 At that time, most interactions followed the pattern. There were several pages that followed different sequence 
diagrams. 



38 
 
 

When users trigger modifications of data, the frontend sends a POST or PUT request to persist 

the modifications and reloads all relevant data by issuing another request. 

 

The process does not differ much from TEAMMATES V6 where server-side rendering is 

adopted25. 

 

 
Figure 40 

As shown in Figure 40, the rendering process is done on the server side. Instead of sending 

data in JSON format, the server sends fully-rendered HTML pages to the browser. 

 

Thus, through the comparison, it is concluded that the frontend in V7 is just doing remote 

procedure call26 (RPC) to the backend to get necessary data for rendering. HTTP is the medium 

                                                

 
25 The reason for changing from server-side rendering to client-side rendering is not within the scope of the report. 
26 It is also known as remote method invocation or remote procedure invocation. 



39 
 
 

used in the RPC. JSON and Uniform Resource Locator (URL) parameters are the 

representations of messages. 

5.2. Problem Observed: Endpoints with Low Maintainability 

It is found that the current endpoints are not maintainable because of the RPC way of handling 

client-server communication. 

 

 
Figure 41 

Firstly, the number of endpoints is exploding. The data bundle returned by one RPC endpoint 

is very specific to the page shown in the frontend, which results in low reusability even though 

there is a high similarity between two data bundles. Due to this, the number of endpoints open 

in the backend is approximately proportional to the number of pages presented in the frontend. 

Figure 41 partially shows the mapping between the endpoints and the actions taken on the 

server side. There are around 30 such endpoints. As the project progresses, it is expected more 

endpoints will be added due to implementations of different features. Such a mass number of 

endpoints will become a significant maintenance burden. 

 

Besides, the one-to-one mapping between the frontend pages and the backend endpoints 

indicates a strong dependency. It is ironic to have the coupling as the main objective of adopting 

client-side rendering is to separate the concern of presentation of data from business logic. A 

backend developer is forced to know how the data is used in the frontend, which is opposed to 

what TEAMMATES V7 wants to achieve — backend developers could have zero knowledge 

of the frontend. 

 



40 
 
 

Moreover, the interfaces of those RPCs are not uniform. Each endpoint has a specific format 

of data bundle. Some endpoints require data to be passed in terms of URL parameters while 

others read data from the request body. Besides, POST and PUT HTTP methods are used without 

any convention, which violates the RFC 723127 specification where POST and PUT methods 

carry meanings. 

 

5.3. Solution: Migrate to RESTful Endpoints 

Since setting the granularity of API endpoints to page level is problematic and result in low 

maintainability, a natural question to ask is whether we can lower the granularity to increase 

the reusability. If common data returned by the old endpoints or sent to the old endpoints can 

be extracted and grouped to new endpoints, the reusability of endpoints would increase and the 

number of them can be controlled. Therefore, the common resources provided by the backend 

are identified and it is expected that these resources will form the new endpoints. 

 

Some inspirations can be gained from the logic data model shown in Figure 3 and it turns out 

that every entity type can be a resource provided by the system. A table is constructed to 

enumerate different resources required by the old endpoints. A partial table is shown as Table 

1. 

 

Resource Name Related Old Endpoints 

Student COURSE_STUDENT_DETAILS_EDIT (PUT) 

STUDENT_RECORDS (GET) 

STUDENT_EDIT_DETAILS (GET) 

COURSE_STUDENT_DETAILS (GET) 

Students INSTRUCTOR_COURSE_DETAILS_DELETE_ALL_STUDENTS 
(DELETE) 

COURSE_ENROLL_SAVE (PUT) 

COURSE_ENROLL_STUDENTS (GET) 

INSTRUCTOR_COURSE_DETAILS (GET) 

                                                

 
27 https://tools.ietf.org/html/rfc7231#section-4.3 



41 
 
 

COURSE_STATS (GET) 

STUDENT_COURSE (GET) 

INSTRUCTOR_STUDENTS (GET) 

Course INSTRUCTOR_COURSE_DETAILS (GET) 

COURSE_EDIT_DETAILS (GET) 

STUDENT_COURSES (GET) 

INSTRUCTOR_COURSES_PERMANENTLY_DELETE 
(DELETE) 

COURSE_EDIT_DETAILS_SAVE (PUT) 

INSTRUCTOR_COURSES (POST) 

Table 1 

After resources are identified, the next step is to define the manipulations of them. More 

specifically, the URIs, HTTP methods, API response formats and API request formats of the 

new endpoints need to be finalized. The architectural principles presented in Representational 

State Transfer (REST) is followed in this step as they are designed to help system that focuses 

on resources to address and transfer state of resources over HTTP (Rodriguez, 2008). 

 

Richardson (2008) introduces the properties of REST by specifying different levels of 

RESTFul28  maturity as shown in Figure 42.  

 

 
Figure 42 – Richardson Maturity Model 

                                                

 
28 When a service applies all REST principles, the service is a RESTFul service. 



42 
 
 

At level 0, HTTP is just used as a transport system for remote procedure invocation. This is 

exactly the current way of interactions between the frontend and the backend. We have shown 

that such design is not maintainable. At one step further, the resources used by the system are 

introduced. Endpoints are added according to the names of the resources. Thus, one more 

column is added to Table 1 and Table 2 is generated. 

 

Resource 
Name 

New 
Endpoint 

Related Old Endpoints 

Student /student COURSE_STUDENT_DETAILS_EDIT (PUT) 

STUDENT_RECORDS (GET) 

STUDENT_EDIT_DETAILS (GET) 

COURSE_STUDENT_DETAILS (GET) 

Students /students INSTRUCTOR_COURSE_DETAILS_DELETE_ALL_STUDENTS 
(DELETE) 

COURSE_ENROLL_SAVE (PUT) 

COURSE_ENROLL_STUDENTS (GET) 

INSTRUCTOR_COURSE_DETAILS (GET) 

COURSE_STATS (GET) 

STUDENT_COURSE (GET) 

INSTRUCTOR_STUDENTS (GET) 

Course /course INSTRUCTOR_COURSE_DETAILS (GET) 

COURSE_EDIT_DETAILS (GET) 

STUDENT_COURSES (GET) 

INSTRUCTOR_COURSES_PERMANENTLY_DELETE 
(DELETE) 

COURSE_EDIT_DETAILS_SAVE (PUT) 

INSTRUCTOR_COURSES (POST) 

Table 2 

After specifying the recourses’ URIs, it is time to focus on the interactions within a resource, 

which leads to the level 2. Richardson’s introduction to HTTP verbs is a bit outdated as HTML 

5 was not the mainstream at that time. Masse (2012) gives a more detailed explanation of HTTP 

verbs, suggesting that HTTP methods should be used as verbs that define the actions within a 



43 
 
 

resource. For example, GET can be used to retrieve a representation of a resource’s state. PUT 

can be used to update a resource. DELETE can be used to remove a resource and POST can be 

used to create a new resource. 

 

Resource 
Name 

New 
Endpoint 

Method Related Old Endpoints 

Student /student PUT COURSE_STUDENT_DETAILS_EDIT (PUT) 

GET STUDENT_RECORDS (GET) 

STUDENT_EDIT_DETAILS (GET) 

COURSE_STUDENT_DETAILS (GET) 

Students /students DELETE INSTRUCTOR_COURSE_DETAILS_DELETE_ALL_
STUDENTS (DELETE) 

PUT COURSE_ENROLL_SAVE (PUT) 

GET COURSE_ENROLL_STUDENTS (GET) 

INSTRUCTOR_COURSE_DETAILS (GET) 

COURSE_STATS (GET) 

STUDENT_COURSE (GET) 

INSTRUCTOR_STUDENTS (GET) 

Course /course GET INSTRUCTOR_COURSE_DETAILS (GET) 

COURSE_EDIT_DETAILS (GET) 

STUDENT_COURSES (GET) 

DELETE INSTRUCTOR_COURSES_PERMANENTLY_DELE
TE (DELETE) 

PUT COURSE_EDIT_DETAILS_SAVE (PUT) 

POST INSTRUCTOR_COURSES (POST) 

Table 3 

Table 3 shows the revised grouping of endpoints with HTTP verbs added. The table is finalized 

now. All old endpoints are to be removed in the backend and the frontend will use the new 

endpoints to retrieve resources. For example, instead of querying the old endpoint 

INSTRUCTOR_COURSE_DETAILS to retrieve the course details and all students, the frontend 

will make two separate GET request to /students and /course to retrieve necessary data. 

 



44 
 
 

There is one more level introduced in the Richardson Maturity Model. However, this migration 

from RPC to REST chooses not to follow it. According to Richardson (2008), the main benefit 

of including hypermedia controls is to tell the clients what can be done next and what is the 

corresponding URIs. Every response sent from the backend will include an extra link section 

for clients to browse. In doing so, the code written in client-side can be flexible or even generic 

if the backend adds, deletes or modifies any endpoint. In addition, frontend developers do not 

need to consult any documentation to understand the usage of endpoints as all instructions are 

included in the link section. Nonetheless, it is believed that hypermedia controls would add 

little values to TEAMMATES as a student project. The APIs provided in the backend are not 

made to the public and the only client is the frontend. Introducing hypermedia controls may 

not benefit anyone but overcomplicates the design of the backend. To improve the experience 

of frontend developers, an alternative approach is adopted as explained below. 

 

JSON is used for resource representations in API requests and API responses as suggested by 

Masse (2012). On top of that,  an automatic sync feature for the request and response formats 

between the frontend and the backend is introduced even one is written in TypeScript and the 

other is written in Java. 

 

 
Figure 43 

Figure 43 shows a typical example of how the representation of a course is synced between the 

frontend and the backend. Any changes in data format in the backend will be automatically 

reflected in the frontend. In addition, as shown in Figure 44, the API call to the backend is 

abstracted to a new method in the frontend which returns asynchronously, enabling the frontend 

developers to fetch data without knowing any details. 



45 
 
 

 

 
Figure 44 

Like response format, the request format is also synced between the frontend and the backend 

as shown in the figure below. 

 

 
Figure 45 

A similar method is also constructed to provide abstractions for API requests. Without 

consulting any documentation, frontend developers can immediately know the format of an 

API request29 as shown in Figure 46. 

 

 
Figure 46 

It should also be noted that the API endpoints are designed to return the created or updated 

resource. The abstracted methods in the frontend follow the behavior by return the modified 

                                                

 
29 Unlike native JavaScript, TypeScript supports static checking of variable types. 



46 
 
 

resource asynchronously, saving any extra cost caused by fetching the created or updated 

resource. This behavior somehow is in alignment with the behavior introduced in chapter 3. 

 

In summary, a set of concise, consistent and uniform resource-based new endpoints are built 

by following the REST principles.  

 

 
Figure 47 

Figure 47 shows the new interaction between the frontend and the backend. Resources are 

fetched or modified asynchronously and combined in the frontend for displaying. 

5.4. Results 

The migrations are divided into several phases30 and conducted together with CS3282 students. 

As of March 30, 2019, 80% of the migrations tasks are completed. Figure 48 partially shows 

the mapping for the new RESTful APIs.  

 

It is obvious that the mapping becomes more readable and self-documenting compared to the 

previous mapping shown in Figure 41. The functionality of each endpoint can be easily 

                                                

 
30 https://github.com/TEAMMATES/teammates/issues/9420 
https://github.com/TEAMMATES/teammates/issues/9494 
https://github.com/TEAMMATES/teammates/issues/9564 
https://github.com/TEAMMATES/teammates/issues/9595 



47 
 
 

understood by looking at the resource URIs and HTTP methods. Indeed, this is one of the 

benefits of RESTful APIs as discussed by Rodrigues (2008). 

 

 
Figure 48 

In addition, the performance of the application as a whole is improved. In the frontend, the 

waiting time for each action executed by users is shorter as multiple resources are fetched or 

modified in parallel. In the backend, the execution time for each endpoint is reduced because 

of the simplified logic for handling just one resource. Indeed, as documented by Google (2019), 

the shorter the execution time, the higher priority the application will gain in a physical server, 

which may result in lower response time.  

 

The hypothesis for the improvement is also proven experimentally. In the interim report of this 

FYP project (Xiao, 2018), a benchmarking for the action of feedback submission was done and 

the throughput and the latency were recorded. The same scenario is set up and the 

benchmarking is also conducted for the migrated RESTful endpoints31. The comparisons are 

shown in Figure 49 and Figure 50. 

 

                                                

 
31 The raw experiment data can be found in Appendix B – RESTful Endpoints Benchmarking Data. 



48 
 
 

 
Figure 49 

 
Figure 50 

The latency gets significant improvements while the throughput decreases by about 38%. This 

can be explained by the fact that more HTTP requests are sent to the servers. In the scenario 

created in the benchmarking, the number of servers is fixed to 20. Thus, it is reasonable to 

guess that lesser submission actions will complete when the capability of handling HTTP 

requests for a single server is fixed. 

 

The degraded throughput can be compensated by adding more servers. When the number of 

servers increases to 40, the throughput increases to 19.99, which is around 2 times bigger than 

the original result. The corresponding latency percentiles are almost not changed. It is true that 

more servers are needed to maintain the same throughput. However, compared to the 

dramatical improvements in latency, the cost is acceptable and is regarded as a trade-off to 

improve latency. 

16.81

10.29

0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00

V6 V7	with	RESTful	APIs

Th
ro
ug
hp
ut

Throughput	Comparision	of	Feedback	
Submission	Action

7629.21

5399.13

3135.56
2454.90

3529.07
2806.50

2167.96 1858.40

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

Latency	99% Latency	95% Latency	75% Latency	50%

La
te
nc
y	
in
	m
s

Latency	Percentile	Comparision	of	Feedback	
Submission	Action

V6 V7	with	RESTful	APIs



49 
 
 

 

In summary, the quality of API endpoints, as well as the latency of actions, have been improved 

in this migration. Both the maintainability and the performance of backend endpoints have 

been well-prepared for entering the stage of a million users. 

5.5. Future work 

This migration only applies some essential REST principles as suggested by Masse (2012). 

More principles could be explored to improve the current design.  

 

For example, the current way of identifying and filtering resources could be discussed. Taking 

the URI of getting a list of feedback sessions as an example, Masse recommends to use 

/course/{courseId}/sessions?status=active to identify and filter resources. 

However, due to the limitation of the framework used in TEAMMATES, the URI is set to be 

/sessions?courseid={courseId}&status=action. Thus, whether a new framework 

needs to be introduced to handle the URI conventions is worth discussing. 

 

In addition, some improvements could also be made to the area of access controls. 

TEAMMATES requires some fields to be hidden in the API responses for some endpoints 

based on the authentication information. For example, both students and instructors can call 

/session to get the details of a session. However, a student is not permitted to see the grace 

period set by instructors. The application currently set the fields to hide to null in the API 

responses. However, this partially breaks the contract of response formats shown in Figure 43 

where the frontend expects non-null fields. Therefore, there is a need to explore better design. 

Masse (2012) proposes the idea of partial responses in the chapter regarding response 

representation composition, which could be a possible solution.   



50 
 
 

6. Other Works 

6.1. Migration from JSP to Angular for Three Pages 

Migration from JSP to Angular is another big project in TEAMMATES besides this FYP 

project. As a core team member, I participated in the project by migrating three pages from JSP 

to Angular. The details can be found in the following links: 

• https://github.com/TEAMMATES/teammates/pull/9345 (Migrate part of instructor 

feedback sessions page to Angular) 

• https://github.com/TEAMMATES/teammates/pull/9339 (Migrate part of session 

submission page to Angular) 

• https://github.com/TEAMMATES/teammates/pull/9281 (Migrate part of 

InstructorFeedbackEditPage page to Angular) 

These experiences enrich my understanding of how the frontend interacts with the backend, 

contributing to some of the ideas presented in chapter 5. 

 

6.2. Project Management 

There are around 110 pull requests reviewed during this FYP project. They can be found on 

https://github.com/TEAMMATES/teammates/pulls?utf8=%E2%9C%93&q=is%3Apr+assign

ee%3Axpdavid+is%3Aclosed+closed%3A%3E2018-08-03. Part of them come from 

reviewing the frontend migration. Most of them come from mentoring the works done by 

CS3282 students and other developers. 

 

Releases are also created regularly for the project manager to deploy on the LIVE server. 

 



51 
 
 

 
Figure 51 – Release tasks created 

 

 
Figure 52 – A typical release created for the project manager to deploy 

 

6.3. Bugs Fixed 

The following are critical bugs fixed during the FYP project. The first number indicates the 

issue number and the second number shows the pull request number. 

• [#9193] InstructorFeedbackEditPageUiTest failing on live server (#9194) 

• [#9146] InstructorSearch: Error searching terms found in deleted sessions (#9147) 

• [#9148] InstructorFeedbackSession: Fix data persistence for sessions with recycled 

names (#9153) 

• [#9109] Deactivate deleted sessions (#9110) 

• [#9090] Instructor edit email of student: send the correct link to student (#9097) 

• [#9157] AssertionError: If the instructor hasn't been retrieved yet there is some problem 

in adding of instructor (#9159)  



52 
 
 

7. Conclusion 

This FYP project successfully improves TEAMMATES in terms of performance, scalability, 

and maintainability, bringing TEAMMATES closer to the next stage of a million users. Several 

performance issues are identified and solved in the three enhancements. Any scalability 

concerns are eliminated in the script package. Lastly, the maintainability is enhanced with 

several iterations of refactoring and redesigning. The project also sees the learning progress of 

CS3282 students as new committers during code reviews and project management, preparing 

them well to be the next batch of core team members. 

 

There are many lessons learned in this FYP project while the most important one is related to 

the quote by Kent Beck — “Make It Work, Make It Right, Make It Fast”. It is this quote that 

explains why TEAMMATES does not follow the best design and consider performance tuning 

at the beginning. At the earlier stage of TEAMMATES, features and functionalities needed to 

be released as soon as possible to improve the user experience. However, after the project is 

stabilized, it is time to put efforts into making things right and fast. Indeed, that is development 

philosophy followed in this FYP project where the gap between making things work and 

making thing right and fast are addressed. In a word, Beck’s words are worth following when 

developing large-scale projects such as TEAMMATES. 

  



53 
 
 

 

References 

Cooper, J. (2009, December). How Entities and Indexes are Stored. Retrieved from Google 

App Engine - Documentation: 

https://cloud.google.com/appengine/articles/storage_breakdown 

 

Google. (2019, January 31). Google Cloud Datastore. Retrieved from Google Cloud 

Datastore Overview: https://cloud.google.com/datastore/docs/concepts/overview 

 

Google. (2019, January 7). How Requests are Handled. Retrieved from App Engine 

Documentaion: https://cloud.google.com/appengine/docs/standard/java/how-requests-

are-handled 

 

Google. (2019, March 23). Limitations and Best Practices - Remote API for Java. Retrieved 

from Google Cloud Documentation: 

https://cloud.google.com/appengine/docs/standard/java/tools/remoteapi#limitations_a

nd_best_practices 

 

Masse, M. (2012). REST API Design Rulebook. Sebastopol, CA: O'Reilly. 

 

Richardson, L. (2008). Act Three: The Maturity Heuristic. Retrieved from Crummy: The Site: 

https://www.crummy.com/writing/speaking/2008-QCon/act3.html 

 

Rodriguez, A. (2008). Restful web services: The basics. IBM developerWorks, 33, 18. 

 

Xiao, P. (2018). Preparing the Backend of a Large-scale Cloud Application for Million Users 

- Interim Report. Singapore: B.Comp. Dissertation, National University of Singapore. 

 



i 
 
 

Appendix A – Optimized Saving Policy Benchmarking Data 

Scenario: 

• A course with ten sections, ten teams in each section, and eight students in each team 

is constructed. 

• A feedback session with five questions is created for students to answer. 

• HTTP POST requests are constructed randomly to simulate submission processes by 

students. 

• It is found that 40 is the optimal concurrency. That is to say; there are 40 clients sending 

POST HTTP requests concurrently. Under such concurrency, the servers’ capabilities 

to handle multiple requests are not underestimated. In addition, the servers are not 

overwhelmed. 

• GAE is configured to use 20 instances with 256 MB memory and 1.2 GHz CPU. 

• The benchmarking is designed to run 60 seconds. 

 

It is noted that GAE needs time to warm up the instances. In addition, the more requests of a 

particular kind are, the more resources would be allocated by GAE to handle those requests. 

Due to this fact, all experiments are run until the results are stable enough. Three experiments 

with stabilized results are chosen. The average of them is taken to be the final result. 

 

Data: 

 Without Optimized Saving Policy With Optimized Saving Policy 
1st Success (Throughput: 16.42): 985 

Failure: 0 
Latency 99%: 10021.65 ms 
Latency 95%: 7703.40 ms 
Latency 75%: 2694.33 ms 
Latency 50%: 1538.55 ms 

Success (Throughput: 24.95): 1497 
Failure: 0 
Latency 99%: 6550.43 ms 
Latency 95%: 4819.73 ms 
Latency 75%: 2040.26 ms 
Latency 50%: 1002.03 ms 

2nd Success (Throughput: 17.68): 1061 
Failure: 0 
Latency 99%: 9626.40 ms 
Latency 95%: 7140.44 ms 
Latency 75%: 2536.56 ms 
Latency 50%: 1498.61 ms 

Success (Throughput: 22.15): 1329 
Failure: 0 
Latency 99%: 8217.94 ms 
Latency 95%: 5755.00 ms 
Latency 75%: 2124.98 ms 
Latency 50%: 1199.87 ms 

3rd Success (Throughput: 19.58): 1175 
Failure: 0 
Latency 99%: 9078.08 ms 
Latency 95%: 5967.96 ms 
Latency 75%: 2344.81 ms 
Latency 50%: 1458.62 ms 

Success (Throughput: 23.88): 1433 
Failure: 0 
Latency 99%: 7541.39 ms 
Latency 95%: 5497.32 ms 
Latency 75%: 1913.66 ms 
Latency 50%: 1039.66 ms 



ii 
 
 

 

Final Result: 

 Throughput 
Without Optimized 
Saving Policy 

17.89 

With Optimized 
Saving Policy 

23.66 

 
 

Without Optimized Saving 
Policy (ms) 

With Optimized Saving 
Policy (ms) 

Latency 99% 9575.38 7436.59 
Latency 95% 6937.27 5357.35 
Latency 75% 2525.23 2026.30 
Latency 50% 1498.59 1080.52 

  



iii 
 
 

Appendix B – RESTful Endpoints Benchmarking Data 

Scenario: 

• A course with ten sections, ten teams in each section, and eight students in each team 

is constructed. 

• A feedback session with five questions is created for students to answer. 

• HTTP POST requests are constructed randomly to simulate submission processes by 

students. Only requests that created new feedback responses will be sent and there are 

800 in total. 

• A optimal number of clients is configured. It is a point where the increasing number of 

clients does not improve throughputs but affect latency significantly. 

• GAE is configured to use 20 instances with 256 MB memory and 1.2 GHz CPU. 

 

It is noted that GAE needs time to warm up the instances. In addition, the more requests of a 

particular kind are, the more resources would be allocated by GAE to handle those requests. 

Due to this fact, all experiments are run until the results are stable enough. Three experiments 

with stabilized results are chosen. The average of them is taken to be the final result. 

 

Data: 

NC: Number of Client 

 V6 (NC=40) V7 with RESTful API (NC=20) 
1st Success (Throughput: 16.55): 800 

Failure: 0 
Latency 99%: 8220.97 ms 
Latency 95%: 5501.90 ms 
Latency 75%: 3172.44 ms 
Latency 50%: 2435.75 ms 

Success (Throughput: 10.18): 800 
Failure: 0 
Latency 99%: 3550.82 ms 
Latency 95%: 2803.37 ms 
Latency 75%: 2183.27 ms 
Latency 50%: 1874.36 ms 

2nd Success (Throughput: 16.93): 800 
Failure: 0 
Latency 99%: 8025.76 ms 
Latency 95%: 5626.94 ms 
Latency 75%: 3034.51 ms 
Latency 50%: 2497.67 ms 

Success (Throughput: 10.34): 800 
Failure: 0 
Latency 99%: 3604.00 ms 
Latency 95%: 2840.50 ms 
Latency 75%: 2129.53 ms 
Latency 50%: 1829.48 ms 

3rd Success (Throughput: 16.95): 800 
Failure: 0 
Latency 99%: 6640.91 ms 
Latency 95%: 5068.54 ms 
Latency 75%: 3199.73 ms 
Latency 50%: 2431.29 ms 

Success (Throughput: 10.34): 800 
Failure: 0 
Latency 99%: 3432.39 ms 
Latency 95%: 2775.63 ms 
Latency 75%: 2191.09 ms 
Latency 50%: 1871.37 ms 

 



iv 
 
 

Final Result: 

 Throughput 
V6 (NC=40) 16.81 
V7 with RESTful 
API (NC=20) 

10.29 

 
 

V6 (NC=40) (ms) V7 with RESTful API (NC=20) (ms) 
Latency 99% 7629.21 3529.07 
Latency 95% 5399.13 2806.50 
Latency 75% 3135.56 2167.96 
Latency 50% 2454.90 1858.40 

 

When increasing number of servers: 

NS: Number of Server 

 Throughput 
V7 with RESTful 
API (NC=20, 
NS=20) 

10.29 

V7 with RESTful 
API (NC=30, 
NS=40) 

19.99 

 
 

V7 with RESTful API 
(NC=20, NS=20) 

V7 with RESTful API 
(NC=30, NS=40) 

Latency 99% 3529.07 3427.80 
Latency 95% 2806.50 2785.97 
Latency 75% 2167.96 2098.37 
Latency 50% 1858.40 1657.52 

 


